

JOURNAL OF C L I N I C A L VIROLOGY

Journal of Clinical Virology 43 (2008) 96-101

www.elsevier.com/locate/jcv

Short communication

One-step RT-PCR for detection of Zika virus

Oumar Faye^{a,d}, Ousmane Faye^a, Anne Dupressoir^{a,b}, Manfred Weidmann^c, Mady Ndiaye^d, Amadou Alpha Sall^{a,*}

^a Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal

^b UMR8122 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, Villejuif, France

^c Institute of Virology, University of Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany

^d University Cheikh Anta Diop Dakar, 24 Avenue Cheikh Anta Diop, Dakar, Senegal

Received 12 January 2008; received in revised form 6 May 2008; accepted 11 May 2008

Abstract

Background: Zika virus (ZIKV) is an emerging mosquito-borne flavivirus circulating in Asia and Africa. Human infection induces an influenza-like syndrome that is associated with retro-orbital pain, oedema, lymphadenopathy, or diarrhea. Diagnosis of Zika fever requires virus isolation and serology, which are time consuming or cross-reactive.

Objective: To develop a one-step RT-PCR assay to detect ZIKV in human serum.

Study design: An assay targeting the envelope protein coding region was designed and evaluated for its specificity, detection limit, repeatability, and capacity to detect ZIKV isolates collected over a 40-year period from various African countries and hosts.

Results: The assay's detection limit and repeatability were respectively 7.7 pfu/reaction and 100% in serum and L-15 medium; none of 19 other flaviviruses tested were detected.

Conclusions: The assay is rapid, sensitive, and specific to detect ZIKV in cell culture or serum, but needs to be validated for diagnosis using clinical samples.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Zika virus; Detection; Diagnosis; RT-PCR

1. Introduction

Zika virus (ZIKV) is a mosquito-borne flavivirus (family Flaviviridae). The viral genome is a single-stranded positive RNA of 10,794 bases (Kuno and Chang, 2007). Human infection is characterized by an influenza-like syndrome that is associated with fever, headache, arthralgia, myalgia, malaise, anorexia, rash, asthenia, retro-orbital pain, oedema, lymphadenopathy, or diarrhea (Bearcroft, 1956; MacNamara, 1954; Simpson, 1964; Mondet, 2007). ZIKV was first isolated in 1947 from a monkey in Uganda (Dick et al., 1952) and has been known to circulate actively in East and West Africa and South-East Asia (Olson et al., 1981; McCrae and Kirya, 1982; Robert et al., 1986; Monlun et al., 1993; Akoua-Koffi et al., 2001; Nathan et al., 2001; Kilbourn et al., 2003). In April 2007, a Zika fever (ZF) outbreak occurred in the Yap States in Micronesia, resulting in 99 confirmed cases within 2 months (Bel, 2007). The outbreak showed that ZF is an emerging disease and emphasized the need for a reliable diagnostic tool, because the first cases were misdiagnosed as dengue infection. Routine laboratory diagnosis assays for ZF are based on virus isolation and serological methods (Fagbami, 1979). However, virus isolation is time consuming, whereas serological methods are limited by the need for acute and/or convalescent samples and by cross-reactions among flaviviruses. Since RT-PCR is widely used for flaviviruses detection (Kuno, 1998) and is rapid, sensitive, and specific in human clinical samples, we developed a one-step RT-PCR method to detect ZIKV.

Abbreviations: L-15, L-15 Leibovitz medium; ZF, Zika fever; ZIKV, Zika virus; RT-PCR, reverse transcriptase polymerase chain reaction; CRORA, WHO Collaborating Center for Arboviruses and Viral Hemorrhagic Fever; FBS, fetal bovine serum; RNA, ribonucleic acid; DTT, dithiothreitol; dNTPs, deoxynucleotide triphosphates; pfu, plaque-forming unit; TE, Tris–EDTA.

^{*} Corresponding author. Tel.: +221 338399223; fax: +221 338399210. *E-mail address:* asall@pasteur.sn (A. Alpha Sall).

^{1386-6532/\$ –} see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jcv.2008.05.005

Table 1 Zika strains used in this study

Reference	Host	Country	Year of isolation	
ArD7117*	Ae.luteocephalus	Senegal	1968	
ArD 9957*	Ae.furcifer	Senegal	1969	
ArD30101	Ae.luteocephalus	Senegal	1979	
ArD 30156*	Ae.furcifer	Senegal	1979	
AnD 30332*	Cercopithecus aethiops	Senegal	1979	
HD 78788	Human	Senegal	1991	
ArD 127707	Ae.furcifer	Senegal	1997	
ArD 127710	Ae.taylori	Senegal	1997	
ArD 127984	Ae.furcifer	Senegal	1997	
ArD 127987	Ae.luteocephalus	Senegal	1997	
ArD 127988*	Ae.furcifer	Senegal	1997	
ArD 127994*	Ae.taylori	Senegal	1997	
ArD 128000*	Ae.luteocephalus	Senegal	1997	
ArD 132912*	Ae.dalzieli	Senegal	1998	
ArD 132915	Ae.dalzieli	Senegal	1998	
ArD 141170	Ae.dalzieli	Senegal	2000	
ArD 142623*	Anopheles coustani	Senegal	2000	
ArD 149917	Ae.dalzieli	Senegal	2001	
ArD 149810	Ae.dalzieli	Senegal	2001	
ArD 149938	Ae. dalzieli	Senegal	2001	
ArD 157995	Ae. dalzieli	Senegal	2001	
ArD 158084	Ae. dalzieli	Senegal	2001	
ArD 165522*	Ae.vittatus	Senegal	2002	
ArD 165531*	Ae.dalzieli	Senegal	2002	
<u>ArA 1465</u> *	<i>Ae.africanus</i>	Ivory Coast	1980	
ArA 27096	Ae.africanus	Ivory Coast	1990	
ArA 27101	Ae.opok	Ivory Coast	1990	
ArA 27106	Ae.luteocephalus	Ivory Coast	1990	
ArA 27290	Ae.opok	Ivory Coast	1990	
ArA 27407	Ae.africanus	Ivory Coast	1990	
ArA 27443	Muci grahami	Ivory Coast	1990	
ArA 506/96*	Ae.vittatus	Ivory Coast	1996	
ArA 975-99*	Ae.aegypti	Ivory Coast	1999	
ArA 982-99	Ae.vittatus	Ivory Coast	1999	
ArA 986-99	Ae.furcifer	Ivory Coast	1999	
ArA 2718*	Ae.luteocephalus	Burkina Faso	1981	
<u>ArB 1362</u> *	Ae.africanus	Central African Republic	1968	

Asterisks (*) indicate Strain sequences of strains used to design the primer pair ZIKENVR and ZIKENVF shown in Fig. 1. Strains sequenced with the ZIKENVR and ZIKENVF primers to confirm amplification of ZIKV are underlined.

2. Material and methods

2.1. Viruses

ZIKV and flavivirus isolates used in this study were supplied by the WHO Collaborating Center for Arboviruses and Viral Hemorrhagic Fever (CRORA) at Institut Pasteur de Dakar (Tables 1 and 2). Viral stocks were prepared using AP61 continuous cell lines and infection progression was monitored using indirect immunofluorescence assay (Digoutte et al., 1992).

2.2. RNA extraction

RNA was extracted from ZIKV isolates and flaviviruses stocks using the QIAamp RNA Viral Kit (Qiagen, Heiden, Germany) according to the manufacturer's recommendations.

2.3. Primer design

The envelope protein coding regions of ZIKV isolates were sequenced following an amplification step with a nested RT-PCR protocol with outer primer pairs Unifor (5'1171TGGGGNAAYSRNTGYGGNYTNTTYGG11973') and Unirev (5'2178CCNCCHRNNGANCCRAARTCC-CA21553') and inner pairs Mounifor2 (5'1209GGRDRMD-TBKWSAYVTGYGCNAWRTT₁₂₃₅3') and Mounirev2 (5[']2094CCNATNSWRCTHCCHKHYYTRWRCCA₂₀₆₈3[']) (Gaunt, personal communication). Primer positions indicated herein are based on ZIKV strain MR-766 sequence (AY632535). To design specific primers for ZIKV detection, sequences obtained for the ZIKV envelope protein coding region and sequences of other flaviviruses available in Genbank were aligned using Clustal X (Thompson et al., 1997). Regions showing highest homology among ZIKV isolates and highest divergence with other flaviviruses were

Table 2	
Flavivirus strains u	sed in this study

Flavivirus species	Reference	Host	Country	Year of isolation
Dengue 1	ArA 15120	Ae.aegypti	Ivory Coast	1985
Dengue 2	ArD 63334	Ae.furcifer	Senegal	1989
Dengue 2	ArA 6894	Ae.aegypti	Burkina Faso	1986
Dengue 2	ArA 29982	Aedes luteocephalus	Ivory Coast	1992
Dengue 2	ArD 140 875	Ae.furcifer	Senegal	1999
Dengue 2	ArD 140 884	Ae.luteocephalus	Senegal	1999
Dengue 2	ArD 141 069	Ae.furcifer	Senegal	1999
Dengue 2	ArD 141 070	A.luteocephalus	Senegal	1999
Dengue 2	ArD 141073	A.taylori	Senegal	1999
Dengue 2	ArD 142 774	Aedes fircifer	Senegal	1999
Dengue 4	HD 38549	Human	Senegal	1983
Yellow fever	ArA 408/78	Ae.luteocephalus	Ivory Coast	1978
Yellow fever	HA 016/97	Human	Liberia	1997
Yellow fever	ArD 149213	A.luteocephalus	Senegal	2000
Yellow fever	ArD 149 214	Ae.furcifer	Senegal	2000
West Nile	AF260968	Human	Egypt	1951
West Nile	M12294	Human	Uganda	1937
Usutu	ArD 130317	Culex perfuscus	Senegal	1998
Ss. Usutu	ArB 1803/69	Cx.perfuscus	Central African Republic	1969
Bagaza	ArB 209	Culex sp	Central African Republic	1966
Bouboui	ArB 490	Anopheles paludis	Central African Republic	1967
Dakar Bat	AnD 249	Scotiphilus sp.	Senegal	1962
Kedougou	ArD 14701	Aedes minutus	Senegal	1972
Koutango	AnD 5443	Tatera kempi	Senegal	1968
Ntaya	ArB 472	Culex sp.	Central African Republic	1967
Uganda S	ArD 109325	Ae.furcifer	Senegal	1994
Saboya	AnD 4600	Tatera.kempi	Senegal	1968
Sepik	MK7148	Mansonia septempunctata	New Guinea	1966
Spondweni	SA Ar 94	Mansonia uniformis	South African Republic	1955
Wesselsbron	ArB 4177	Rhipicephalus muhsamae	Central African Republic	1982
Yaounde	ArY 276/68	Culex nebulosus	Cameroon	1968

selected to design ZIKENVF and ZIKENVR primers for ZIKV genome detection.

2.4. One-step RT-PCR amplification

RT-PCR was carried out using TITAN one-tube RT-PCR kit (Boehringer Mannheim Biochemicals)-with 22.8 μ l RNA extracted from 50 μ l of ZIKV samples and eluted in 50 μ l of Tris EDTA (TE) buffer and 500 ng of each primer. Amplification was performed in a 9700 GeneAmp PCR Thermocycler (Applied Biosystem, Foster City, USA) using the following procedure: 1 cycle at 50°C for 30 min and 95°C for 2 min, and 35 cycles at 95°C for 20 s, 55°C for 20 s, and 68°C for 30 s, followed by a final elongation step at 68°C for 7 min. Amplicons were visualized on 2% ethidium bromide stained agarose gel.

2.5. Specificity and detection limit of the RT-PCR assay

The specificity of the assay was evaluated using various ZIKV isolates and flaviviruses described in Tables 1 and 2. In addition, flaviviruses were tested with VD8/EMF1 primers as described by Pierre et al. (1994) in order to confirm the presence of RNA.

The detection limit of the assay using primers ZIKENVF and ZIKENVR was evaluated by testing serial 10-fold dilutions of viral suspension in human sera previously tested negative for mosquito-borne flaviviruses and Leibovitz 15 medium (L-15) supplemented with 10% fetal bovine serum (FBS).

The intra-assay repeatability was measured by testing 10 times the 10-fold dilutions series during the same run.

3. Results

3.1. Selection of primers and evaluation of their specificity

ZIKVENVF (5'-GCTGGDGCRGACACHGGRACT-3') and ZIKVENVR (5'-RTCYACYGCCATYTGGRCTG-3') primers were designed for one-step RT-PCR and hybridized respectively to positions 1538–1558 and 1902–1883 of the ZIKV genome sequence AY632535 (Fig. 1). The one-step RT-PCR assay detected viral RNA from all 37 ZIKV strains (Table 1, Fig. 2). As a further confirmation, the 364 bp amplicons from five isolates were sequenced and showed 92% to 99% nucleotide similarity with ZIKV Uganda 1947

	1538	1558		1883	1902
ArA506	GCTGGGGGCAG ACACCGGAA	СТ	ArA506	CAGCCCAGAT	GGCGGTGGAC
ArA975			ArA975		
ArB1362			ArB1362		
ArA1465	AGAG.		ArA1465	A	AT
ArA2718	TT		ArA2718		A
ArD7117	TT		ArD7117		A
ArD9957	C		ArD9957		
ArD30101	TT		ArD30101		
ArD30156	TT		ArD30156		
AnD30332	TT		AnD30332		
ArD127988	TT		ArD127988		
ArD127994	TT		ArD127994		
ArD128000	TT		ArD128000		
ArD132912	AGAG.		ArD132912	A	T
ArD142623	AGAG.		ArD142623	A	AT
ArD165522	TT		ArD165522		A
ArD165531	TT		ArD165531		A
AF372422			AF372422		
AY632535			AY632535	T	
AF372416NTA	.G.TCA CAGGAAATT	G G	AF372416NTA	ATCT.A.TGA	CAGCAAATCT
AF372421SAB	CAT.AGA CTGA.AT.T	G A	AF372421SAB	GCCGGATG	ATGCT.CAGG
AF298808DEN1	T.GATA CAGTC.C	A A	AF298808DEN1	TTTT.G.CCC	AAGATGAA.A
AF231721DEN1	T.GTT CAATCCC	A G	AF231721DEN1	TTTT.G.CCC	AAGATGAA
S64849DEN1	T.GTT CAATCCC	A A	S64849DEN1	TTTT.G.CCC	AAGATGAA
AY702039DEN2	C.CAGACA.G	G A	AY702039DEN2	TTTGAG.T.A	CAGAT.T.GA
AB194882DEN2	C.CAGT.AACA.G	A G	AB194882DEN2	TTTGAG.T.A	T.GAT.T.GA
L10042DEN2	C.CAGACA.G	G A	L10042DEN2	TTTGAG.T.A	T.GAT.T.GA
AF231718DEN2	CAACA.G	G G	AF231718DEN2	TTTGAG.TCA	T.GAC.T.GA
AF231720DEN2	CAACA.G	G G	AF231720DEN2	TTTGAG.TCA	T.GAC.T.GA
M93130DEN3	AT.TCAAGCA GACT.CCCC	A A	M93130DEN3	TTCTCGG	A.GATG.ACA
L11430DEN3	T.AATA CAA.A	. A	L11430DEN3	TTT.T.CACA	.AG.A
L11433DEN3	T.AATA CAG.A.A.G	ГА	L11433DEN3	TTT.TACG	.AG.A
AF231722DEN4	AAGTC.G	A A	AF231722DEN4	ATAGAG.T.A	.AGATGTA
U18431DEN4	AAATC.G	A G	U18431DEN4	ATAGAG.T.A	.AGATGTA.A
S66064DEN4	AAATC.G	A A	S66064DEN4	A.TAGAGATA	A.A.A.TGA
U89338YF	AGCCAGT. GTGGG.TGT	G G	U89338YF	GT.ATAGT.G	CTGATGATCA
AY502949YF	AGCAAGT. G.GGG.TGT	G G	AY502949YF	GT.ATAGT.G	CTGATGATCA
AY572535YF	AGCAAGT. G.GGG.TGT	G G	AY572535YF	GT.ATAGT.G	CTGATGATCA
AY495573YF	AGAAGT. G.GGG.TGT	G G	AY495573YF	GT.ATAGT.G	CTGATGATCA
U54798YF	AGCTAGC. G.GGG.TGT	G G	U54798YF	GT.ATAGTGG	CTGATGATCA
AF312554YF	AGAAGT. G.GGT.TGT	G G	AF312554YF	GTAATGGTGG	CTGATGATCA
U17066YF	AGAAGT. G.GGG.TGT	G G	U17066YF	GT.ATAGT.G	CTGATGATCA
U23574YF	AGAAGT. G.GGG.TGT	G G	U23574YF	GT.ATAGT.G	CTGATGATCA
U23572YF	AGCTAGC. G.GGG.TGT	G G	U23572YF	GT.ATAGTGG	CTGATGATCA
AY033391WN	AGCT.G.A GTT.TGT	G G	AF260967WN	TG.GA.GA.G	.CGTAGA
AF260967WN		G C	AY428527WN	T.T.T.GTCA	.TG.C.TC.T
AY428527WN	AGCT.G.A GTT.TGT	G G	AY033391WN	T.T.T.GTCA	.TG.C.TC.T
Primer ZIKENVF	GCTGGDGCRG ACACHGGRA	СТ	Primer ZIKENVR	GTCRGGTYTA	CCGYCAYCTR

Fig. 1. Alignment of annealing regions of ZIKENVR and ZIKENVF for Zika virus and selected flavivirus strains.

Fig. 2. Agarose gel electrophoresis of products of RT-PCR assay sensitivity in (A) L-15 medium and (B) human serum in pfu/ml. T, negative control; M, molecular weight marker (Amersham100 pair Base-Pair Ladder, GE Healthcare, UK).

strain MR-766 sequence (AY632535) by BLAST analysis (Altschul et al., 1990).

In addition, no amplification was observed with any of the 31 isolates of 19 flaviviruses tested (Table 2), although they contained RNA, as confirmed by the amplification with mosquito-borne consensus primer pairs VD8/EMF1 (Pierre et al., 1994) (data not shown).

3.2. Detection limit of the one-tube RT-PCR assay

To evaluate the detection limit, two ZIKV isolates, ArD165531 and ArD142623, were selected to consider sequence variability in the primer binding sites. Tenfold serial dilutions of a 3.37×10^5 pfu/ml ZIKV initial stock were prepared in L-15 medium containing 10% FBS or in human serum previously tested negative by RT-PCR for mosquitoborne flaviviruses. The detection limit of the assay was found to be 7.7 pfu/reaction in human serum and L-15 medium (Fig. 2), corresponding to a titer of 337 pfu/ml for both ZIKV isolates. The intra-assay repeatability of the detection limit in human serum and L-15 was assessed by testing 10 samples, each containing 3370 pfu/ml, 337 pfu/ml, or 33.7 pfu/ml. The assay detected 10 out of 10 (100%) dilutions in L-15 and in sera with 3370 pfu/ml and 337 pfu/ml; no dilutions in samples with 33.7 pfu/ml were detected.

4. Discussion

RT-PCR has been successfully used for identification and diagnosis of arboviruses (Scaramozzino et al., 2001). We have developed and evaluated a rapid, sensitive, and specific RT-PCR assay for the detection of ZIKV in L-15 medium and human serum. To our knowledge, this is the first published report describing a one-tube RT-PCR for specific detection of ZIKV.

The analytical specificity of the assay was evaluated using RNA from 37 ZIKV isolates and from 31 isolates of 19 related flaviviruses. Amplicons of the expected size and sequences were observed only from the ZIKV samples, indicating the specificity of this assay.

The detection limit of 337 pfu/ml is similar to that reported for flaviviruses assays (Morita et al., 1991; Brown et al., 1994) and is low enough to detect ZIKV viraemia ranging from 10³ pfu/ml to 10⁶ pfu/ml in natural human infection (Simpson, 1964; Weinbren and Williams, 1958; Bearcroft, 1956). This detection limit eliminated the need for a nested PCR. In addition, the high repeatability (100%) of the assay in L-15 medium and human serum demonstrated its robustness. Moreover, the one-step RT-PCR assay was easier and faster than virus isolation and serological methods. Since ZF clinical presentation is not very specific, the RT-PCR assay presented herein should improve distinguishing ZIKV from other arboviruses (e.g., dengue and chikungunya) in areas where they are endemic and cocirculating, as in southeastern Senegal (Monlun et al., 1993). In this regard, further studies with samples from naturally infected ZF patients should better define the kinetics of viremia and anti-ZIKV IgM and IgG antibodies at a very early phase of infection.

Acknowledgements

The authors thank Camille Escadafal for correcting the English version of the manuscript and two anonymous reviewers for their comments to improve the paper. This work was supported by the Unit of Arbovirus and Hemorrhagic Fever Virus at Institut Pasteur de Dakar.

References

- Akoua-Koffi C, Diarrasouba S, Bénié VB, Nigbichi JM, Bozona T. Investigation autour d'un cas mortel de fièvre jaune en Côted'Ivoire en 1999. Bull Soc Pathol Exot 2001;94(3):227–30.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–10.
- Bearcroft WG. Zika virus infection experimentally induced in a human volunteer. Trans Roy Soc Trop Med Hyg 1956;50(3):48–42.
- Bel M. Zika Virus Micronesia (Yap). Promed. Archive number 20070713.2252, August 7, 2007 [Cited 6 August 2007]. Available from http://www.promedmail.org.
- Brown TM, Chang GJ, Cropp CB, Robbins KE, Tsai TF. Detection of Yellow fever virus by polymerase chain reaction. Clin Diagn Virol 1994;2:41–51.
- Dick GW, Kitchen SK, Haddow AJ. Zika virus isolation and serological specificity. Trans Roy Soc Trop Med Hyg 1952;46:506–24.
- Digoutte JP, Calvo-Wilson, Mondo M, Traore-Lamizana, Adam F. Continuous cell lines immune ascite fluid pools in arbovirus detection. Res Virol 1992;143:417–22.
- Fagbami AH. Zika virus infection in Nigeria: virological and seroepidemiological investigation in Oyo State. J Hyg Camb 1979;83:213–9.
- Kilbourn AM, Karesh WB, Wolfe ND, Bosi EJ, Cook RA, Andau M. Health evaluation of free-ranging and semi-captive Ourangutans (Pongo Pygmaeus) in Sabah Malaysia. J Wildlife Dis 2003;39(1).
- Kuno G, Chang GJJ. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol 2007;152: 687–96.
- Kuno G. Universal diagnostic RT-PCR protocol for arbovirus. J Virol Method 1998;72(1/15):27–41.
- MacNamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans Roy Soc Trop Med Hyg 1954;48(2):139–45.
- McCrae AW, Kirya BG. Yellow fever and Zika virus epizootics and enzootics in Uganda. Trans Roy Soc Trop Med Hyg 1982;76(4): 552–62.
- Mondet B. Zika Virus Outbreak—Micoronesia (Yap). Promed. Archive number 20070702.2108 July 2, 2007. Cited 29 Jun 2007. Available from http://www.promedmail.org.
- Monlun E, Zeller H, Le Guenno B, Traoré-Lamizana M, Hervy JP. Surveillance de la circulation des arbovirus d'intérêt médical dans la région du Sénégal Oriental (1988–1991). Bull Soc Path Ex 1993;86(1): 21–8.
- Morita K, Tanaka M, Igarashi A. Rapid identification of dengue virus serotypes by using polymerase chain reaction. J Clinic Microbiol 1991;29(10):2107–10.
- Nathan DW, Kilbourn AM, Karesh WB, Rahman HA, Bosi EJ. Sylvatic transmission of Aboviruses among Bornean orangutans. Am J Trop Med Hyg 2001;65(5–6):310–6.

- Olson JG, Ksiazek TG, Suhandiman, Triwibowo. Zika virus, a cause of fever in Central Java, Indonesia. Trans Roy Soc Trop Med Hyg 1981;75(3):389–93.
- Pierre V, Drouet MT, Deubel V. Identification of mosquito-borne flavivirus sequences using universal primers and reverse transcription/polymerase chain reaction. Res Virol 1994;245:93–104.
- Robert V, Lhuillier M, Meunier D, Sarthou JL, Monteny N. Virus Amaril, Dengue 2 et autres arbovirus isolés de moustiques, au Burkina Faso, de 1983 à 1986: considérations entomologiques et épidémiologiques. Bull Soc Path Ex 1986;86:90–100.
- Scaramozzino N, Crance JM, Jouan A, Debriel DA, Stoll F, Garin D. Comparison of flavivirus universal primer pairs and development of a rapid,

highly sensitive heminested RT-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequence. J Clin Microbiol 2001;139(5):1922–7.

- Simpson DL. Zika virus infection in man. Trans Roy Soc Trop Med Hyg 1964;58:335-8.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windowns interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–82.
- Weinbren MP, Williams MC. Zika virus: further isolations in the Zika area, and some studies on the strains isolated. Trans Roy Soc Trop Med Hyg 1958;52:263–8.